Circles

Write an equation for the circle with the given center and radius.

1) center: $(-1,-5) ; r=2$ units
2) center: (0,7); $r=1$ unit

Find the coordinates of the center and the radius of each circle whose equation is given and then draw a graph.
3) $(x-3)^{2}+(y-1)^{2}=25 \quad$ 4) $x^{2}+y^{2}+6 y=-50-14 x$

Write the equation each graph or description of the circle.

6) The circle has its center at $(8,-9)$ and passes through the point $(21,22)$.

Ellipses

Find the coordinates of the center, vertices, and the lengths of the semi-major and semi-minor axes for each ellipse, then sketch a graph.

1) $\frac{x^{2}}{9}+\frac{y^{2}}{18}=1$
2) $\frac{x^{2}}{25}+\frac{y^{2}}{9}=1$
3) $\frac{(x+8)^{2}}{144}+\frac{(y-2)^{2}}{81}=1$

Write an equation for each graph.
4)

5)

6) Write in standard form. Find the center and the semi-major and semi-minor axes. $4 x^{2}+16 y^{2}-8 x+96 y+84=0$

Parabolas

Find (a) vertex (b) focus and (c) the directrix

1) $y+3=4(x-3)^{2}$
2) $y+2=8(x-4)^{2}$
3) $x-5=4(y-1)^{2}$

Write in standard form. Then find the vertex, focus, the directrix, and graph the equation
4) $2 y^{2}+8 x-8 y+16=0$

Write the equation of a parabola in standard form for the following:
5) Focus (7,-2); directrix $x=1$
6) Parabola passes through point $(2,16)$; axis of symmetry is $x=0$; vertex $(0,0)$

Hyperbolas

Write an equation for the hyperbola pictured.
1)

Find the coordinates of the center, the endpoints of the semi-conjugate axis and semi-transverse axis, and sketch a graph.
2) $\frac{x^{2}}{81}-\frac{y^{2}}{49}=1$
3) $\frac{x^{2}}{9}-\frac{y^{2}}{25}=1$
4) $\frac{(x+6)^{2}}{36}-\frac{(y+3)^{2}}{9}=1$

Write in standard form of a hyperbola
5) $9 x^{2}-25 y^{2}-36 x+50 y-214=0$

Write an equation for the following hyperbolas in standard form:
6) center $(3,3)$; vertex $(1,3)$

All Conics

For each of the following: (a) Identify the type of conic section, and (b) Write the equation in standard form.

1) $x^{2}+y^{2}-2 x+4 y+4=0$
2) $x^{2}+9 y^{2}-36 y+27=0$
3) $y^{2}-4 x-6 y+9=0$
4) $x^{2}-8 x+2 y+16=0$
5) $x^{2}-4 y^{2}+8 y-8=0$

Conic Applications

1) The main cables of a suspension bridge are 20 meters above the road at the towers and 4 meters above the road at the center. The road is 80 meters long. Vertical cables are spaced every 10 meters. The main cables hang in the shape of a parabola. Find the equation of the parabola.
2) The outer door of an airplane hangar is in the shape of a parabola. The door is 120 feet across and 90 feet high. Find an equation describing the door's shape.
3) An engineer designs a satellite dish with a parabolic cross-section. The dish is 15 ft . wide at the opening and the depth is 4 feet. Find the position of the light source (the focus).

CHALLENGE!!!!! Sarai is riding a Ferris wheel that has a diameter of 80 feet and is the lowest point is 10 feet above the ground. The wheel turns at a rate of one revolution every 15 seconds.
a) Write the parametric equations describing Sarah's position if she starts at the 3 o'clock position.
b) What is Sarah's position after 40 seconds?

