Honors PreCalculus Unit 1 Building Functions Project

Instructions: All students will create a diversified portfolio of concepts using the lessons below. Students must accumulate <u>at least 85 points</u> for the Project grade. There is a maximum of 128 points that can be earned on this project. Yes, you will earn "extra" points if you go above and beyond the minimum.

Concepts	Assignment	Points
1.1 Function	1. If $f(x) = x^2 - 3x + 4$, $f(-3) = ?$	5 points
Notation	2. If $h(x) = (x + 2)^3/5$, what is x when $h(x) = -25$ 4 12	
	If g(x) is described by the table at right	
	3. Find g(8) - g(6) 4. If g(x) + 2 = 14. find x 10 -6	
1.2 Interval Notation	1. Inequality: $-6 \le x \le -4$ OR $-3 \le x$	4 points
	-5 -4 -3 -2 -1 0 1 2 3 4 5	
	Interval notation:	
	2. Inequality:	
	-5 -4 -3 -2 -1 0 1 2 3 4 5	
	Interval notation: (-∞, 4)	
	3. Inequality: $x \ge 0$ or $x \le -2$	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
1.3 Properties of	Pick 2 parent functions of your choice. Graph them. Use	12 points
Functions	your notes to identify and analyze the following concepts:	
	end behavior, continuity vs. discontinuity, domain, range,	
	bounded, asymptotes	
1.4 Parent	Draw all 9 parent functions on graph paper. Include at least	27 points
Functions	5 points for each graph.	

Due Date: Hard copy to be turned in by	/ <u>September 22nd</u>	– NO EXCEPTIONS. Late	e: - 20 points
--	------------------------------------	-----------------------	----------------

	Therepie Falles			
1.5 Domain	1. $f(x) = \sqrt{(x-3)} / (x-6)$			9 points
Restrictions				
	Z			
	2. $f(x) = 1 / \sqrt{(4 - x^2)}$			
1.6 Modeling	The number of Starbucks that existed over time is given b	elow. Cre	ate a scatter	15 noints
1.0 Wouching	plot of the data on your calculator. What type of			15 points
	regression might fit best?	Year	Number	
			of	
	Create an exponential regression model, E(x), of the		Locations	
	data (round to the hundredths) where x is the years	1987	17	
	after 1980	1988	33	
		1989	55	
	Find E(21). What does it mean?	1990	84	
		1991	116	
	The actual number of Starbucks in 2001 was 4709.	1992	165	
	What might your model not be considering about	1993	272	
	business growth the real world?	1994	425	
		1995	676	
	Generally, business growth usually levels out in the	1006	1015	
	long run. Find a logistic regression. L(x). of the data	1007	1015	
	where x is years after 1980. Is L(21) closer to the actual	1997	1412	
	number?	1998	1000	
		1999	2498	
1.8 & 1.9	PreCalculus Transformations Worksheet (even questions) 30		30 points	
Transformations				
	Analyzing Tax Systems (abtain a cary from Ma Crosse)		20 mainta	
1.10 PIECEWISE	Analyzing Tax Systems (obtain a copy from Ms. Grosse)		20 points	
Functions				
1.11 Composition	Evaluate, given that $f(x) = -2x + 4$ and $g(x) = x^2$			6 points
9 Combinations	a. (g - f)(2a) =			
& combinations	b. (f ° g)(3) =			

Unit 1 Building Functions Project - Real World Application: Income Tax

In the United States, we have a progressive income tax. This means that as you make more money, the percentage that goes to taxes increases. A simplified version of a progressive tax system is shown below.

If you annually earn:

- \$0 37,000
- \$37,001 90,000
- Over \$90,000

15% tax on this amount less than or equal to \$37,000
25% tax on this amount above \$37,000 but less than or equal to 90,000
28% tax on this amount above \$90,000

We can model this <u>progressive tax</u> based on a person's income i with the equation:

$$P(i) = \begin{cases} .15i & when \ i \le 37,000 \\ .25i - 3700 & 37,000 < i \le 90,000 \\ .28i - 6400 & when \ i > 90,000 \end{cases}$$

Some politicians argue that the United States should switch to a <u>flat income tax</u>. This means that everyone pays the same tax rate, no matter how much money they make.

A flat tax of 17% could be modeled by the equation: F(i) = .17i for all i > 0

1) For both functions, what is the domain? [Hint: why was *i* chosen as the variable?]

2) What output is either function calculating?

3) Why do you think the function names P(i) and F(i) were chosen?

4) What are the two income levels where the tax rate changes in the progressive tax?

Fill in the following chart that shows how much tax an individual would have to pay, based on yearly salary, for both the progressive tax systems and the flat tax system.

Mean annual salary	Taxes due under progressive tax P(i)	Taxes due under <u>flat tax F(i)</u>	Part B
1) \$9,000			
2) \$30,000			
3) \$40,000			
4) \$70,000			
5) \$85,000			
6) \$120,000			
7) \$215,000			

Part A

Part C

Based on the table above, write a minimum of 5 sentences comparing the two different tax structures. Be sure to address the following questions:

- Who benefits more from a progressive tax?
- Who benefits more from a flat tax?
- Which would you prefer to have?

Below is a chart of various occupations and the average yearly salary for individuals with those jobs. For each one, calculate the amount of tax they would owe under the progressive system. Then on the graph below, graph the data using income as the x – coordinate and the taxes owed as y – coordinate.

Occupation	Annual mean wage	Taxes Owed
Software Publishers	\$100,000	
Home Health Care Services	\$25,000	
School Maintenance	\$30,000	
Actuary	\$125,000	
Pharmacist	\$115,000	
Veterinarian	\$95,000	
Registered Nurse	\$65,000	
Computer Programmer	\$75,000	

	. <u> </u>		Part D
Occupation	Annual mean wage	Taxes Owed	
Physician's Assistant	\$90,000		
Radiology Technologist	\$60,000		
Graphic Designer	\$40,000		
Waiter/Waitress	\$20,000		
Teacher	\$55,000		
Civil Engineer	\$85,000		
Construction Worker	\$35,000		