Warm Up

4.81, 27, 9, 3, 1,
$$\frac{1}{3}$$
,...

 $\alpha_n = 81 \cdot (\frac{1}{3})^{n-1}$ state the pattern then write the

4.-2, 4, -8, 16, -32, 64, -128

 $\alpha_n = -2 \cdot (-2)^{n-1}$ explicit formula for each

4. 3, 6, 9, 12, 15, 18, 21, 24, ...

 $\alpha_n = 3 + (n-1)(3)$

A. 25, 20, 15, 10, 5, 0, -5, -10, ...

 $\alpha_n = 3 + (n-1)(3)$
 $\alpha_n = 3 + (n-1)(3)$

A. 25, 20, 15, 10, 5, 0, -5, -10, ...

 $\alpha_n = 3 + (n-1)(3)$

A. 25, 20, 15, 10, 5, 0, -5, -10, ...

 $\alpha_n = 3 + (n-1)(3)$

A. 25, 20, 15, 10, 5, 0, -5, -10, ...

 $\alpha_n = 3 + (n-1)(3)$

A. 26, 20, 15, 10, 5, 0, -5, -10, ...

A. 3rd Block Teacher-Made Exam Thursday, May 23 and Block Teacher-Made Exam Tuesday, May 28 and Block Teacher-Made Exam Tuesday,

25 + (n-1)(-5) pring 2019 Exam Schedule		
72 + (11-11)C		
Teacher-Made Exam Schedule	1st Block Teacher-Made Exam	Thursday, May 23
	2nd Block Teacher-Made Exam	Friday, May 24
	3rd Block Teacher-Made Exam	Tuesday, May 28
	4th Block Teacher-Made Exam	Wednesday, May 29
Yearlong (A-Day/B-Day) Teacher- Made Exam Schedule	1st Block A-Day and 2nd Block A-Day	Thursday, May 23
	1st Block B-Day and 2nd Block B-Day	Friday, May 24
	3rd Block A-Day and 4th Block A-Day	Tuesday, May 28
	3rd Block B-Day and 4th Block B-Day	Wednesday, May 29
EOC/NCFE Exam Schedule	1st Block	Friday, May 31
	2nd Block	Monday, June 3
	3rd Block	Wednesday, June 5
	4th Block	Thursday, June 6
	Make-ups	Friday, June 7

Unit 9: Sequences & Series Key Words

- Arithmetic
- Geometric
- Sequence
- Explicit
- Recursive
- Infinite
- Finite
- Series / Partial Sums
- Summation Notation
- Series Formulas

9.3 I can analyze series using summation notation

$$\sum_{i=m}^{n} f(i)$$

Objective 9.4

Arithmetic & Geometric Series

"Partial Sums"

Series Formulas

Arithmetic Series

$$S_n = \frac{n}{2} (a_1 + a_n)$$

$$n = term #$$
 $a_1 = 1^{st} term$
 $a_n = anyterm$

Geometric Series

$$S_n = \frac{a_1(1-r^n)}{(1-r)} (r \neq 1)$$

$$5 = \frac{\alpha_1}{1-r} \left(\frac{|r|||x||}{|r||x|} \right)$$
when
$$risa$$

x on your formula sheet

Steps for Evaluating

- 1. Determine if arithmetic or geometric
- 2. Substitute the information into the formula

Example 1

Evaluate a series with terms

1, 7, 13, 19, 25 for the first 13 terms

n=13

+6+6+6

$$a_{13} = a_1 + (n-1)d$$
 Arithmetic

 $a_{13} = 1 + (13-1)(6)$
 $S_n = \frac{1}{2}(a_1 + a_n)$
 $a_{13} = 1 + (12)(6)$
 $S_{13} = \frac{13}{2}(1 + a_{13})$
 $S_{13} = \frac{13}{2}(1 + 73)$
 $S_{13} = \frac{13}{2}(1 + 73)$

Example 2

Find the sum of the first 10 terms of the geometric series with $a_1 = 6$ and r = 2.

$$S = \frac{a_{1}(1-r^{n})}{(1-r)}$$

$$S = \frac{6(1-2^{10})}{(1-2)} = 6138$$

Example 3

A philanthropist donates \$50 to the SPCA. Each year, she pledges to donate 12 dollars more than the previous year. In 8 years, what is the total amount she will have donated?

In 8 years, what is the total amount she will have donated?

$$a_{1} = 50, \frac{62}{a_{2}}, \frac{74}{a_{3}}, \frac{8b}{a_{4}}, \frac{98}{a_{5}}, \frac{10}{a_{7}}, \frac{134}{a_{8}}$$

$$a_{13} = 50 + (n-1)(12)$$

$$= 50 + (7)(12)$$

$$a_{13} = 134$$

$$S_{8} = \frac{8}{2}(50 + 134)$$

$$S_{8} = \frac{8}{2}(50 + 134)$$

9.5 CONVERGENT & DIVERGENT SERIES

* only apply to geometric * problems

Convergent Sequence

A sequence is **converging** if its terms approach **zero**.

*Only applies to geometric sequences.

Divergent Sequence

A sequence is **diverging** if its terms approach **infinity**.

Patterns

*Only applies to geometric sequences.

Determine if the following sequences are convergent or divergent:

1)
$$27,9,3,1, \frac{1}{3}, \frac{1}{9}$$
... Convergent $5 = \frac{a_1}{1-r}$
 $r = \frac{l}{3}$
2) $5,15,45,135$... divergent $5 = \frac{a_1(l-r^n)}{l-r}$
 $r = 3$

3)
$$100,10,1,.1,.01,.001,...$$
 Convergent $S = \frac{a_1}{1-r}$

Unit 9 Assignment

- Complete Part I and II today
- Ask Ms. Grosse questions
- Collaborate!

Unit 9 Summary

Complete your FINAL unit organizer concept map summary!

http://bit.ly/2HjT5i1

NCFE Packet Work Time

Complete ALL the problems

Use the answer key to help if you get stuck