Warm Up

1. Identify the amplitude, frequency, period, and the y-intercept of the equation: $y = 3\sin(4x) - 2$

$$a=3$$
 $B=4$
 $y=-2$ $P=4$

)

2. How does the graph of $g(x) = 2\sin(3x) + 4$ differ from the graph of its parent function, $f(x) = \sin(x)$?

1)
$$y = 3$$
 sin $(9x)-2$

Vertical $p = \frac{17}{2}$ is shorter

2) $y = (2)\sin(3x) + 4$

and amplitude $p = 2\pi$

is taller shorter $p = 2\pi$

Shorter period

Unit 6 Summary

<u>Unit 6 Analytic</u> <u>Trigonometry Reloop</u>

- Collaborate in teams of 2 or 3
- Ask 3 before me!
- Check the solution station for help!

Solve for ALL angles

1.
$$2\cos\theta + 1 = 0$$

$$\cos \theta = -\frac{1}{2}$$

$$\cos^{-1}\left(-\frac{1}{2}\right) = \Theta$$

$$cos^{-1}(-\frac{1}{2}) = 0$$

$$[120^{\circ} = 0]$$

$$2. \quad \sqrt{2} \sin 0 - | = 0 \quad (-\frac{\sqrt{2}}{2})$$

$$+ | + |$$

$$Sin\theta = y$$
 $Sin\theta = \frac{1}{\sqrt{2}}$

$$\sin^{-1}\left(\frac{1}{\sqrt{2}}\right) = \theta \quad \text{and} \quad 135^{\circ}$$
3. $4\cos^{2}\theta - 3 = 0$

3.
$$4\cos^2\theta - 3 = 0$$

$$\cos^2\theta = \frac{3}{4}$$

$$\cos\theta = \pm \sqrt{3} = \sqrt{3}$$

COS = 13

$$30^{\circ} = 0$$
and
$$330^{\circ}$$

$$\cos^{-1}\left(-\frac{\sqrt{3}}{2}\right) = \Theta$$

$$150^{\circ} = \Theta$$
and
$$20^{\circ}$$

(3) { 120°, 240°3

315

6.4 Solving Trigonometric Equations

Materials Needed

- knowledge of unit circle and angles
- solid understanding of inverse operations

TEST

Units 1, 2, 3, 4, 5, and 6 Multiple Choice Short Answers

COMPLETE THE STUDY GUIDE!