Warm Up

- File all paperwork
- o Organize binder
- Fill in any missing notes or work
- 1. Condense the expression to a single logarithm: $\ln(3) + 2\ln(4-x^2) \ln(x)$

alculator Inactive

 $2. \ \ \text{For each of the following functions, identify the following characteristics.}$

a.
$$f(x) = \left(\frac{1}{2}\right)^{x-1} - 1$$

Domain:

Range: _____

Asymptote:

y-intercept:

Transformations: _____

End Behavior:

b.
$$g(x) = -5 \cdot 2^{x-2} + 3$$

Domain:

Announcements

ODON'T PROCRASTINATE!!!!!

Solving for Unknown Exponents

You are going to be asked on the NCFE questions like, "How much time does it take to earn \$1000 if the rate is 4%, and initial investment is \$500 when compounded continuously?"

condense logs

Solving

Example 1: $\log_2 x \oplus \log_2(x-2) = 3$

Exponentiation
$$2^{\log_2 \chi(x-2)} = 3$$

$$\chi(x-2) = 3$$

$$\chi(x-2) = 3$$

$$\chi(x-2) = 8$$

Logarithmic Equations

Example 2:
$$\log_{10} 4 \oplus \log_{10} w = 2$$

Example 3:

 $4\ln(2x+3) = 8$

Ln and
ex
are inverses
Lnx & ex

$$\ln(2x+3) = 2$$

$$2^{1x}(2x+3) = e^{2}$$

$$2x+3 = 7.39$$

$$2x = 4.39$$

$$x = 2.195$$

Example 4: $\log_9(3u + 14) \bigcirc \log_9 5 = \log_9 2u$

$$\log_4 \frac{3u+14}{5} = \log_4 2u$$

tage
$$\frac{3u+14}{5} = \log_4 2u$$
 logs on both sides cancel out

$$3u + 14 = 10u$$
 $14 = 7u$
 $2 = u$

Review-Exponentiation

$$2 \log_{5} x + \log_{5} 3x = 2$$

$$\log_{5} x^{2} \oplus \log_{5} 3x = 2$$

$$\log_{5} 3x^{3} = 2$$

$$\log_{5} 3x^{3} = 2$$

$$3x^{3} = 3$$

$$3x^{3} = 3$$

$$3x^{3} = 2$$

$$3x^{3} = 3$$

$$3x^{3} = 2$$

$$3x^{3} = 3$$

$$3x^{3} = 3$$

$$3x^{3} = 2$$

$$3x^{3} = 3$$

Example 1:
$$2^{x-3} = 32$$

$$\int_{2}^{2} \frac{1}{2} (x-3) = \log_{2} 32$$

$$X-3 = 5$$

$$X = 8$$

Example 2:
$$\frac{4(5^{x})}{-1} = -68$$

 $5^{x} = 17$
 $\log_{5} 5(x) = \log_{5} 17$
 $X = \log_{5} 17$
 $X = 1.76$

Example 3:
$$-14 + 3e^x = 11$$

$$3e^x = 25$$

$$e^x = \frac{25}{3}$$

$$Lae^x = Ln\left(\frac{25}{3}\right)$$

$$X = 2.12$$

Example 4:
$$5^{3x} = 8^{x-1}$$
 $109_{8} 5(3x) = 109_{8} 8(x-1)$
 $3x = 1.3(x-1)$
 $3x = 1.3x - 1.3$
 $1.7x = -1.3$
 $x = -1.3x - 1.3$

P-I-G Classwork

- Work with a partner, independently, or in a group
- Check your answers at the Solution Station
- O Ask 3 before me

Fixed Rate

Growth or decay involving seconds/min/hour (used for compound interest)

$$A = P\left(1 \pm \frac{r}{n}\right)^{nt}$$

Constant Rate

Continuous growth or decay (used for radioactive decay and continuously compounded interest)

$$A = Pe^{rt}$$

Example 11: Rita invests \$8000 into a retirement account with a 9% interest rate. How long, to the nearest year, would it take for the account to reach \$16,000 if it is

- a) compounded monthly?
- b) compounded continuously?

Exit Prompt

Analyze the work shown below. Indicate where there was a mistake, fix it, and explain what they should have done correctly.