Warm Up

 Given the table of values below, what is the possible parent function, f(x)?

x	f(x) + 3
-2	7
-1	4
0	3
1	4
2	7

- A. f(x) = x
- B. f(x) = |x|
- $C. \quad f(x) = x^2$
- D. $f(x) = \sqrt{x}$
- Let f(x) = x² and g(x) be f(x) reflected over the x-axis and translated to the left 7 units. Which table represents this translation?
 - A. x g(x)
 0 -49
 1 -36
 2 -25
- B. x g(x)
 0 -7
 1 -8
 2 -11
- C. x g(x) 0 -49 1 -64 2 -81
- D. x g(x)
 0 7
 1 6
 2 3

- 3. What happens to the graph of a function if you replace x with 5x in its equation?
 - A. vertical expansion by a factor of 5
 - B. horizontal expansion by a factor of 5
 - C. horizontal compression by a factor of $\frac{1}{5}$
 - D. horizontal shifting by 5 units

4. Let
$$f(x) = \frac{1}{x}$$
 and $g(x) = \frac{1}{(x+3)}$.

Describe the transformation from f(x) to g(x).

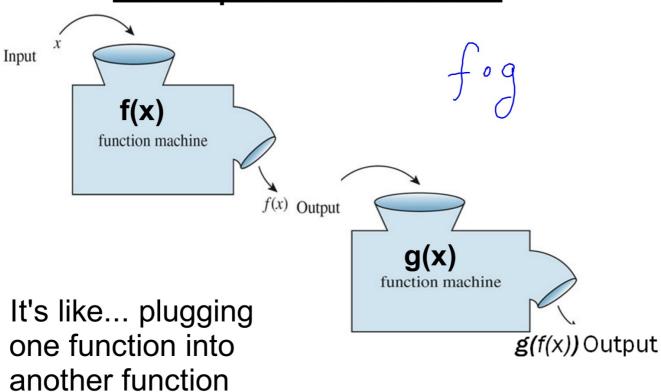
- A. translated 3 units to the right
- B. translated 3 units up
- C. translated 3 units to the left
- D. translated 3 units down
- 5. The graph of $y = \sqrt{\frac{3}{2}x}$ is the image of $y = \sqrt{x}$ after:
 - A. horizontal compression by a factor of $\frac{2}{3}$
 - B. vertical compression by a factor of $\frac{2}{3}$
 - C. vertical expansion by a factor of $\frac{3}{2}$
 - D. horizontal and vertical expansion by a factor of $\frac{3}{2}$

1.6 Combinations and Compositions of functions Combinations

Addition
$$(f+g)(x)$$

Subtraction $(f-g)(x)$
Multiplication $(fg)(x)$
Division $(f(g)(x))$

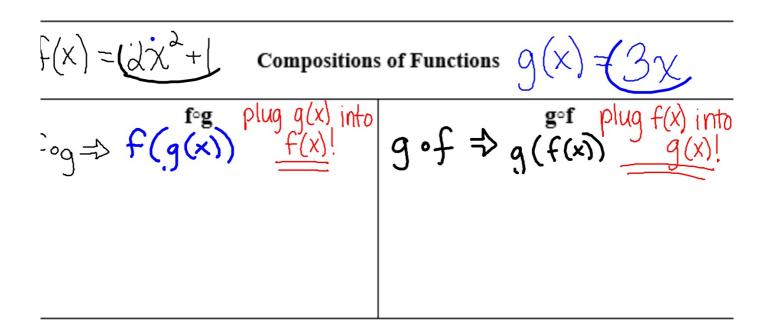
1.6 Combinations of Functions


- 1. Addition Rule \rightarrow (f+g)(x) = f(x)+g(x)
- 2. Subtraction Rule $\rightarrow (f-g)(x) = f(x)-g(x)$
- 3. Multiplication Rule \rightarrow $(f \cdot g)(x) = f(x) \cdot g(x)$
- 4. Division/Quotient Rule $\rightarrow (f/g)(x) = f(x)$

1.6 Compositions of Functions

£°9

gof


1.6 Compositions of Functions

A <u>composition</u> of two functions is like... nesting dolls because one function gets plugged into another function.

Composition of Functions

Checkpoint 2

Given f(x) = x + 2 and $g(x) = 4 - x^2$, find the following.

a.
$$(f \circ g)(x)$$

b.
$$(g \circ f)(x)$$

a.
$$(f \circ g)(x)$$
 b. $(g \circ f)(x)$ **c.** $(g \circ f)(-2)$

P-I-G

Exit Ticket

In complete sentences and using examples where needed:

explain the difference betweencombinations and compositions!